If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+200x+4=0
a = 25; b = 200; c = +4;
Δ = b2-4ac
Δ = 2002-4·25·4
Δ = 39600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39600}=\sqrt{3600*11}=\sqrt{3600}*\sqrt{11}=60\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-60\sqrt{11}}{2*25}=\frac{-200-60\sqrt{11}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+60\sqrt{11}}{2*25}=\frac{-200+60\sqrt{11}}{50} $
| n9-4=-3 | | 25=v+14 | | (8y-12)(1.2+0.3y)=0 | | (2t+1)+(4t-8)+(6t-187)=180 | | 10=21+n | | 3v-(9v)=30 | | 5+5n=25 | | h/48=12/18 | | -20=-5x-10 | | (2t+1)+(4t-8)=180 | | x²-12=37 | | 3x-70=500 | | y=32+y | | -2.5x=-6 | | 2r=25 | | 3x+70=460 | | C(x)=25.75-0.06x | | 2x^2-30=98 | | 4x-18=+3 | | 29=j-4 | | n+78=-20 | | 4–(x+3)=-2x+3(x–9) | | -21+9x-5x=47 | | 2x-72-9x=124 | | -x+14x-169=91 | | -54-11x+6x=106 | | X-52-5x=24 | | x+(-8)=8 | | 5x-15x-116=44 | | 60+102=2x | | -174-x+10x=150 | | 15=f+1 |